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Continuous-time random walks have been developed as a straightforward generalization of classical
random-walk processes. Some ten years ago, Fogedby introduced a continuous representation of these pro-
cesses by means of a set of Langevin equations �H. C. Fogedby, Phys. Rev. E 50, 1657 �1994��. The present
work is devoted to a detailed discussion of Fogedby’s model and presents its application for the robust
numerical generation of sample paths of continuous time random-walk processes.
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I. INTRODUCTION

The extensive analysis of stochastic processes by Bach-
elier, Einstein, and Langevin �1–3� has inspired scientist in
the last century. First, Fokker-Planck equations describing
the time evolution of probability density functions �PDFs�
emerged. In addition, mathematical methods for proper inter-
pretation of the associated Langevin equations have been
developed that allow access to the trajectories of individual
particles. An intrinsic feature of these processes is that they
obey Markov properties �4�. Therefore, two point statistics
are sufficient for a complete description of these processes.

In recent years, processes exhibiting anomalous diffusion,
�x2�t��� t� with ��1, increasingly have attracted attention
�5�. Such processes typically are realized in complex envi-
ronments such as porous and disordered media, see, e.g.,
Ref. �6� and references therein. In contrast to ordinary diffu-
sion, Markov properties do not hold for these processes.
Therefore, multipoint joint statistics have to be considered
for a proper description of the dynamics. Likewise, two al-
ternative approaches to these processes have been evolved.
On the one hand, these processes can be described by means
of fractional Fokker-Planck equations that contain fractional
derivatives with nonlocal character. On the other hand,
continuous-time random-walk �CTRW� processes �7� have
been proposed for the analysis of the microscopic properties
of anomalous diffusion processes �8�. In general, they are
specified by the iterative discrete equations �5,9�

xi+1 = xi + �i, �1a�

ti+1 = ti + �i, �1b�

where ��i ,�i� is a set of random numbers drawn from the
PDF ��� ,��, that vanishes for negative values of � for rea-
sons of causality. Frequently, Eqs. �1� are used to model
time-continuous processes with the additional assignment
�7,9�

x�t� = xi, with ti � t � ti+1. �2�

With the aid of CTRWs, limiting behavior and ensemble sta-
tistics of anomalous diffusion processes become accessible
through Monte Carlo simulations. For details, the reader is
referred to recent works by Dentz et al. �6�, Heinsalu et al.
�10�, and Gorenflo et al. �11�.

Recently, Fogedby formulated a continuous description of

CTRWs that is based on a set of stochastic differential equa-
tions �12�,

dx

ds
= F�x� + ��s� , �3a�

dt

ds
= ��s� . �3b�

Here, the discrete variable i of Eqs. �1� is generalized to the
continuous variable s that can be associated with an intrinsic
time of the CTRW. A number of publications addressed sta-
tistical properties of trajectories of this approach �13–15�. It
is the aim of the present work to present a robust algorithm
for the generation of continuous sample paths from Foged-
by’s equations. By this means trajectories can be obtained
that properly exhibit the anomalous dynamics of CTRWs on
any time scale.

This work is structured as follows. In the next section,
some general remarks are made on the definition of continu-
ous CTRWs, Eqs. �3�. Section III is dedicated to the proper-
ties of the process t�s�, Eq. �3b�, that typically is driven by
Levy noise. The numerical simulation of continuous CTRW
processes is presented in Sec. IV and exemplified by means
of some results in Sec. V. We conclude with Sec. VI that
summarizes our results and suggests future applications.

II. CTRWS IN THE SPIRIT OF FOGEDBY: SOME
REMARKS

First of all, the character of the distributions of the ran-
dom variables � for the jump length and � for the waiting
time has to be addressed. In case of the discrete definition,
Eqs. �1�, a broad class of distributions is feasible for this
purpose. The continuous Langevin formulation of Fogedby,
Eqs. �3�, however, requires the associated distributions to be
stable in order to be properly defined. For a short introduc-
tion into the concept of stable distributions we refer to �5�. In
the long-time limit, however, both approaches are equivalent.

In 1994, Fogedby introduced the stochastic differential
equations �3� for CTRWs as the continuum limit of the path
parameter or arc length s along the trajectory �12�. He con-
sidered independent random variables ��s� and ��s� with
power-law behavior, that is,

���,�� � �−1−���−1−�� for �,� � 1. �4�

For reasons of normability, Fogedby used cutoffs at low val-
ues of ��� and �, respectively. He mainly was interested in the
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properties of the process x�t� that can be obtained from Eqs.
�3� by inversion of the latter process. By means of his modi-
fied power-law distributions, the long-time behavior of pro-
cesses with power-law waiting jump length and waiting time
distributions could be derived. In this context, first properties
of the inverse process s�t� of Eq. �3b� have been addressed.

Baule et al. investigated the properties of the inverse pro-
cess s�t� in greater detail �13�. In particular, multitime joint
probabilities could be calculated. The waiting times � were
considered to obey one-sided Levy distributions with tail pa-
rameter �, that are discussed in greater detail in the follow-
ing section. In absence of external force terms �F=0 in equa-
tion �3a�� analytical expressions for correlations functions
could be derived by application of the inverse Fourier and
Laplace transforms. Recently, these results could be ex-
tended to Ornstein-Uhlenbeck-like processes with a linear
repelling term, thus F�x�=−�x �15�.

Both works, however, focus on the ensemble statistics,
whereas the Langevin approach of Fogedby, that is interest-
ing itself, has not attracted much attention yet.

III. PROPERTIES OF t„s… AND ITS INVERSE
PROCESS s„t…

In this section we concentrate on the process t�s�. Due to
causality, this process has to be strictly monotonically in-
creasing. The increments dt�s�= t�s+ds�− t�s�, therefore,
have to obey fully skewed stable distributions.

Generally, stable distributions are assigned to the �-stable
probability distribution functions �PDFs�. �-stable Levy dis-
tributions typically are not available in a closed form but are
only accessible by means of their Fourier transform. We es-
pecially consider the distribution

L��x� =
1

	
Re	


0




dz exp�− ikx − z� exp�− i
�	

2

�� .

�5�

Here, i is the imaginary unit and 0���1 the stability index
that specifies the asymptotic behavior L��x��x−�1+�� at
x�1. This PDF complies with a common parametrization of
�-stable PDFs �5,16,17�,

L�
�,c�x� =

1

2	



−





dz exp�− ikx − cz��1 − i�
z

�z�
tan

�	

2

� ,

�6�

for the parameters �=1 and c= �1+tan2 �	
2

��−1/2�. Some ex-
amples for this distribution are depicted in Fig. 1. An impor-
tant feature of this representation is, according to Eq. �5�, is
defined even for �=1 by means of L�=1�x�=��x−1�. From
the theory of stable processes it follows that the increment dt
has to obey the distribution ds−�L��dt /ds�� �16�. The case
�=1 with dt=ds complies with stochastic processes that
solely can be described by Eq. �3a� with s= t.

An intrinsic feature of Levy processes is that trajectories
contain finite jumps in terms of discontinuities with a prob-
ability greater than zero. They are continuous only from the
right �18�, that is,

lim

s→0

t�s + 
s� = t�s� . �7�

A sample of a fully skewed Levy process with characteristic
exponent �=0.9 is depicted in the upper panel of Fig. 2. Due
to these jumps, the range of values t�s� does not cover the
full interval �0, 
 �. Rather, the range can be specified by
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FIG. 1. Examples for the fully skewed Levy distribution accord-
ing to Eq. �5� for different characteristic exponents �. For �→1,
the PDF converges to ��x−1�.
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FIG. 2. Trajectories of the process t�s� �upper panel� and the
associated inverse process s�t� �lower panel� simulated for �=0.9.
The finite jumps of the process t�s� that are characteristic for Levy
processes are evident. Due to these jumps the inverse process s�t�,
however, a priori is not defined on �0, 
 �.
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means of a set of intervals. Due to the monotonic increase of
the process t�s� a inverse process s�t� exists. This process has
been applied for construction of the process x�t�=x(s�t�) in
the past. It, however, a priori is not properly defined for t
� �0, 
 � due to the jump characteristic of the Levy process.
A sample of the inverse process is depicted in the lower
panel of Fig. 2.

In general, the meaning of the inverse function has to be
specified in order to be properly defined on t� �0, 
 �. Ap-
propriate definitions for the inverse function, e.g., are �18�

s�t� ª inf�s:t�s� � t� or �8a�

s�t� ª sup�s:t�s� � t� . �8b�

If the process x�s� is steady, these definitions are equiva-
lent in the limit 
s→0 for t� �0, 
 �. Since x�s� is steady,

lim

s→0

x�s − 
s� = lim

s→0

x�s + 
s� = x�s� �9�

is valid by definition. Due to the monotonic character of the
process t�s�, t�s�� t�s+
s� for 
s�0. Consequently, s
�s�t���s+
s if t�s�� t�� t�s+
s�. Then,

lim

s→0

x�s� = x„s�t��… = x�s + 
s� �10�

is valid for t�s�� t�� t�s+
s�. Here, for the process t�s�,
only the continuity from the right has been used. For steady
processes x�s� in the limit of infinitesimal 
s, no additional
definition for proper interpretation of the inverse function is
required.

If unsteady jumps of x�s� coincide with those of t�s�, the
latter argumentation is not feasible. We, however, restrict
ourselves to stochastic processes x�s� with Gaussian noise
that are steady with probability 1 for s� �0, 
 �.

IV. NUMERICAL SIMULATION OF SAMPLE PATHS

An equivalent formulation of Eqs. �3� is given by the
integral equations

x�s� = x�0� + 

0

s

ds�F„x�s��… + 

0

s

dW�s�� , �11a�

t�s� = t�0� + 

0

s

dL��s�� , �11b�

where dW and dL� are the infinitesimal increments of Wiener
and �-stable Levy processes, respectively. For numerical in-
tegration these equations have to be discretisized with an
adequate discrete increment 
s. Application of the Euler
scheme for numerical evaluation of Eqs. �11� then yields

x�s + 
s� = x�s� + 
sF„x�s�… + ��s,
s� , �12a�

t�s + 
s� = t�s� + ���s,
s� . �12b�

Here, the random variables ��si ,
s� independently have to
be drawn from a Gaussian PDF with variance �2=
s. The

variables ���si ,
s� have to comply with the distribution
1


s� L�� ��


s�
�. The efficient numerical generation of these ran-

dom numbers is addressed in the Appendix. Due to the ab-
sence of forcing and the purely additive character of the
noise, the integration of t�s� by means of the Euler scheme is
exact. For numerical integration of the process x�s� with
Gaussian noise, alternatively advanced discretization
schemes can be applied �19�.

For numerical simulation of trajectories x�t� at discrete
times tjª j
t, j=0, . . . ,N, the inverse s�t� does not have to
be calculated explicitly. Instead, the following algorithm can
be applied that incorporates definition �8a� for the inverse
process:

�A� Initialization of xs�0� and ts�0�, set s=0.
�B� For every j=0 to N,
�1� while �ts�s�� tj�
�a� calculate xs�s+
s� and ts�s+
s� from Eqs. �12�,
�b� increase s by 
s;
�2� set x�tj�ªxs�s�.
The discretization of t, 
t, is given by the desired sam-

pling rate of the simulated process. The optimal value for the
discretization of the intrinsic variable s, 
s, depends on char-
acteristic length scales of the process x�s� and the desired
accuracy of the resulting process x�t�. Typically, 
s has to be
adjusted such that the right-hand-side term of the discrete
equation, 
sF(x�si�)+��si ,
s�, with a sufficient probability,
is less than the desired accuracy of the simulation. This ar-
gument is illustrated within the scope of the following sec-
tion. Too small values for 
s, in turn, may bias the accuracy
of the numerical evaluation of Eqs. �12� due to discretization
errors and reduce the speed of the algorithms. The choice for

s therefore is a tradeoff between the accuracy of the dis-
cretization, validity of the inversion of the process t�s�, com-
puter time, and discretization errors. For details concerning
the numerical evaluation of the discretized equations �12�,
the reader is referred to Kloeden and Platen �19�.

V. EXAMPLES

For exemplification of the simulation procedure and char-
acteristic properties of continuous CTRWs, processes with
F�x�=−x are considered. The process x�s� then is an ordinary
Ornstein-Uhlenbeck process

dx�s� = − �xdt + �DdW�s� �13�

with D=�=1. For later comparison with analytical results,
x�0�=1 is used as the starting value for the process x�s�.

For Ornstein-Uhlenbeck processes, joint PDFs for finite
time increment can be calculated in a closed form �4�. Then,
the statistics of the increments 
xªx�s+
s�−x�s� can be
considered as a function of the discretization 
s. The distri-
bution of 
x as a function 
s is Gaussian with variance

��
x�2� = 2�1 − e−
s� . �14�
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In order to estimate an appropriate value for 
s, the root
mean square deviation has been investigated. From the in-
spection of Fig. 3, 
s=0.0001 has been selected for the ap-
plication in the numerical procedure. The maximum devia-
tion of the definitions �8� from one another is �10−2, which
is accurate enough for the current purpose.

10 000 data points with time increment 
t=0.001 have
been generated for several values of �. The trajectories of the
respective processes are exhibited in Fig. 4. From the sample
paths, the influence of the subordinating process t�s� on the
dynamics becomes evident. For �=1 an Ornstein-Uhlenbeck
process is recovered. With decreasing � waiting events start
to dominate the process. This also can be seen from the
evolution of the increment PDFs that is depicted in Fig. 5.

Recently, the fractional extension of Ornstein-Uhlenbeck
processes has been investigated by Baule et al. �15�, starting
from the fractional Fokker-Planck equation for the time evo-
lution of ensembles of particles. For the Ornstein-Uhlenbeck
process x�s� with initial value x�0�=1 that has been consid-
ered in this section, for t2� t1, eventually an analytical ex-
pression for the correlation function could be derived,
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FIG. 3. Determination of the intrinsic increment 
s. From the
transition PDF of Ornstein-Uhlenbeck processes that is available in
a closed form, the square root of the means square deviation of the
increment 
x as function of the increment 
s can be derived. From
inspection of this graph, 
s=0.0001 seems to be sufficient for the
current purpose.
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FIG. 4. Sample trajectories of CTRWs with linear repelling force F�x�=−x for different stability indices �. The solid line corresponds to
the process x�t� whereas the dashed line indicates the corresponding s�t�. �=1 complies with the ordinary Ornstein-Uhlenbeck process. With
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�x�t2�x�t1�� =
t1
�

��� + 1��n=0



�− t2

��n

���n + 1�

�2F1��,− �n,� + 1;
t1

t2

 + E��− t2

�� . �15�

Here, � denotes the Gamma function, E� the one-
parameter Mittag-Leffler function, and F21�a ,b ,c ;z� the
Gaussian hypergeometric function. For details see the refer-
ences provided by Baule et al. �15�.

On the other hand, the correlations can be estimated from
ensemble averages of simulated trajectories x�t�. A compari-
son of the analytical result by Baule et al. with the correla-
tions estimated from our simulated trajectories is exhibited in
Fig. 6. Perfect coincidence of these two approaches is ob-
served that never could be compared before.

VI. SUMMARY AND CONCLUSIONS

A method for the accurate and efficient simulation of con-
tinuous trajectories of continuous-time random walk
�CTRW� processes has been proposed that relies on the rep-
resentation through Langevin equations proposed by
Fogedby. It is based on the simultaneous simulation of two
stochastic processes, one of which is driven by Levy noise.

Within the scope of Sec. III, the construction of the pro-
cess x�t�=x(s�t�) with the aid of the inverse s�t� of the Levy
process t�s� has been discussed in great detail. The unique
existence of the inverse of t�s� for any t typically has been
assumed in the past �13�. However, the meaning of the in-
verse process in fact has to be specified in detail at discon-
tinuities of t�s� in order to guarantee for unique existence,
see, e.g., Eqs. �8�. We would like to emphasize that these
additional specifications influence neither the trajectories x�t�
nor the ensemble statistics if the trajectories x�s� are continu-
ous with probability 1. In the subsequent sections, we mainly
focussed on this specific case.

Comparison with recent analytical results by Baule et al.
�15� has been used for validation of the simulation procedure
and showed compliance of the results. Due to the non-
Markovian character of fractional processes, higher-order
joint statistics are of great interest �20�. We propose the use
of probabilistic methods for numerical calculation of these
functions.
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APPENDIX: GENERATION OF RANDOM VARIABLES
WITH SKEWED �-STABLE PDF ACCORDING

TO EQ. (5)

Skewed Levy-stable random numbers efficiently can be
generated by means of the algorithm proposed in �16,17�. We
adapted this algorithm to our definition of the skewed Levy
distributions, Eq. �5�.

The random numbers ���si ,
s� are required for numerical
integration of the process t�s�, then for 0���1 efficiently
can be generated by means of the following algorithm:

�i� Generate a random variable Vi uniformly distributed on
�−	 /2,	 /2� and an independent exponential random vari-
able Wi with mean 1. Several optimized random number gen-
erators are available for this purpose. In case of doubt, V and
W can be obtained from two independent variables ui

1 and ui
2

that are uniformly distributed on �0,1� by means of
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FIG. 5. Increments distributions for 
xªx�t+��−x�t� with �
=0.001 for some processes depicted in Fig. 4. For reasons of clear-
ness the individual PDFs are shifted in vertical direction by a con-
stant factor. It is evident that with decreasing stability index � a
central peak evolves that corresponds to persistent regions due to
waiting events. On the other hand, the distributions broaden indi-
cating a higher probability of the occurrence of extreme increments.
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FIG. 6. Correlation function of the process depicted in Fig. 4 for
�=0.8. The solid line marks the analytical solution �15� derived by
Baule et al. �15�. The circles indicate the correlation obtained from
the analysis of an ensemble of 500 000 trajectories. Since a perfect
coincidence is observed, this evaluation is proposed as a benchmark
for accuracy of the numerical implementation.

CONTINUOUS-TIME RANDOM WALKS: SIMULATION OF … PHYSICAL REVIEW E 76, 061102 �2007�

061102-5



Vi = 	�ui
1 −

1

2

 , �A1�

Wi = − log�ui
2� . �A2�

�ii� Set

���si,
s� = �
s�1/�
sin���Vi +

	

2

�

�cos�Vi���1/��

� � cos�Vi − ��Vi +
	

2

�

Wi
�

�1−��/�

. �A3�

In case of ��1, �1�si ,
s�=
s is recovered. If adequate
random-number generators are applied for the generation of
the variables Vi and Wi, the resulting random-numbers �� are
uncorrelated. From Fig. 7 it becomes evident that the desired
skewed �-stable Levy PDF �5� is matched. This algorithm
therefore can be applied for efficient numerical simulation of
the process t�s� according to Eq. �12a�.
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FIG. 7. Performance of the generation of skewed �-stable ran-
dom numbers. The solid line exhibits the PDF obtained by numeri-
cal integration of Eq. �5� for �=0.8. For x�1 the PDF shows
power-law decay with the exponent 1+0.8 that is depicted dashed.
The points mark the PDF obtained from a sample of 107 random
numbers that have been generated by means of Eq. �A3� for the
same stability index. The analytical PDF evidently is well repro-
duced by the sample of random numbers.
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